Comparing 2- and 3-dose 9-valent HPV Vaccine Schedules in the U.S.

A Cost-effectiveness Analysis

Marc Brisson Canadian Research Chair Modeling Infectious Diseases Professor, Université Laval

ACIP June 2016

Modeling Team

Université Laval

- Jean-François Laprise
- Mélanie Drolet

CDC

- Harrell Chesson
- Lauri Markowitz

Disclaimer

• The findings and conclusions expressed are those of the author and do not necessarily represent the official views of the Centers for Disease Control and Prevention (CDC) or the Department of Health and Human Services (DHHS)

Peer reviewed

• Follows Guidelines for economic analyses to be presented to the ACIP

Conflicts of interest statements

- M Brisson, JF Laprise, HW Chesson, LE Markowitz
 - No known conflicts of interest
- M Drolet (past 3 years): Consulted for GSK (Zoster vaccine)

Funding: Canada Research Chairs, CDC, IRSC CIHR

Introduction

- A 2-dose 9-valent vaccine phase III immunogenicity trial has been completed
- 2 doses of 9-valent in girls and boys 9-14 years old was as immunogenic as 3 doses in women 16-26 years old
 - for types HPV-6/11/16/18/31/33/45/52/58

Study question

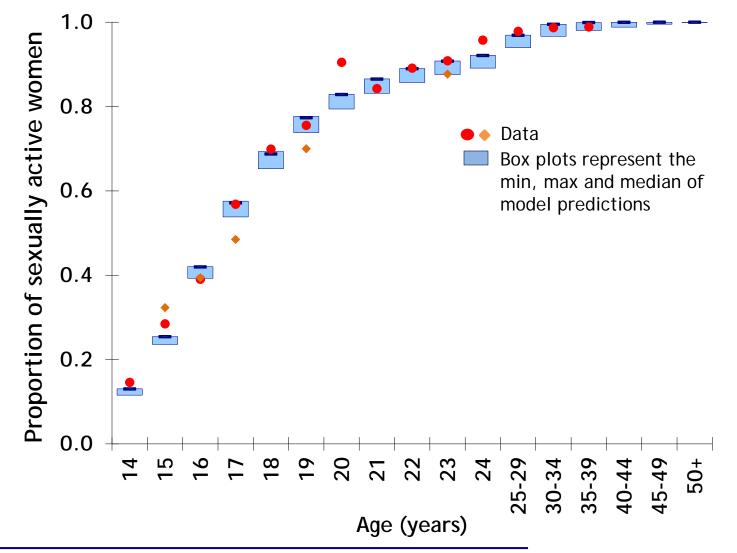
From the societal perspective, what is the health and economic impact of switching from a 3- to a 2-dose schedule, in the context of an established 9-valent HPV vaccination program in the U.S.?

i.e. what is the additional impact of the 3rd dose of 9-valent vaccine vs. 2 doses?

Objective

To evaluate the population-level effectiveness and costeffectiveness of 3- versus 2-dose 9-valent vaccination in the U.S.

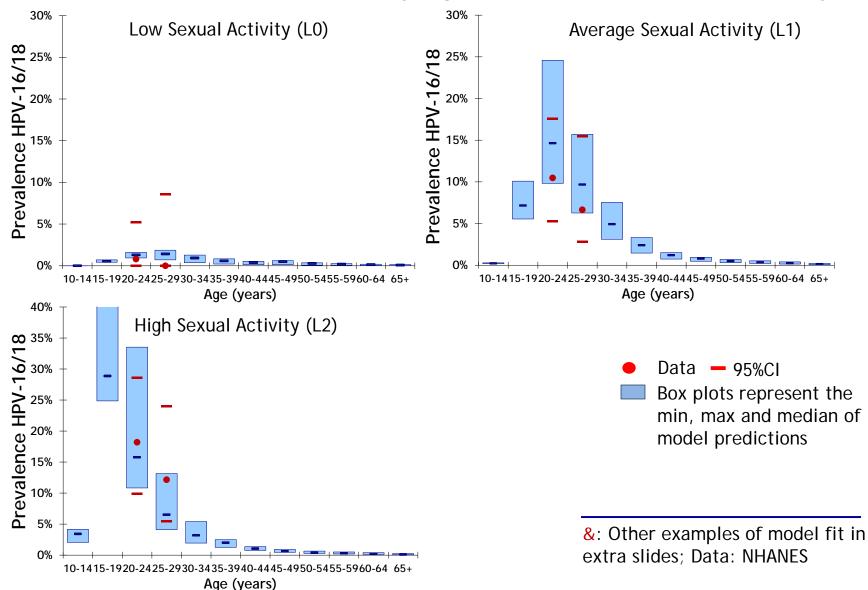
Methods

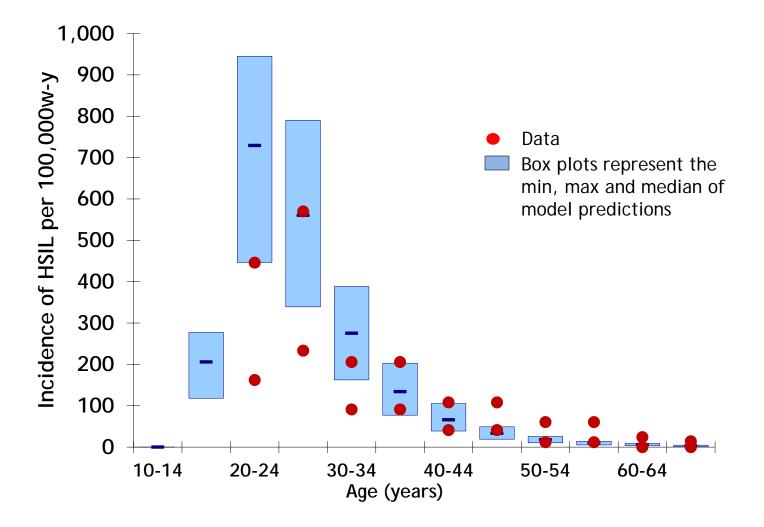

Model Overview - HPV-ADVISE U.S.

- Model type: Individual-based transmission-dynamic model[&]
- Components: Demographic
 Sexual behaviour & HPV transmission
 Natural history of disease
 Vaccination
 Screening & Treatment
 Economic
- Population: Open-Stable, 10 to 100 years of age
- HPV infections: 18 genotypes, including 6/11/16/18/31/33/45/52/58
- Diseases: Anogenital warts
 Cervical cancer (SCC & adenocarcinoma)
 Cancers of the anus, oropharynx, penis, vagina & vulva

&: Brisson et al. JNCI 2016 108(1) doi:10.1093/jnci/djv282

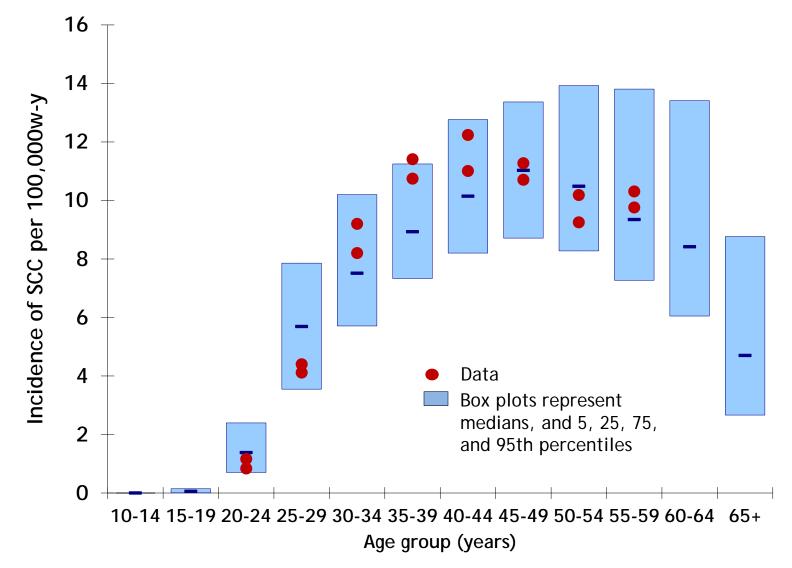
Model Fit - sexual behaviour


Ex: Proportion sexually active women


&: Other examples of model fit in extra slides; Data: NHANES

Model Fit - HPV prevalence in women

Ex: HPV-16/18 prevalence by age and level of sexual activity



Model Fit – Screening Ex: Incidence of HSIL

&: Other examples of model fit in extra slides; Data: Insinga 2004

Model Fit – Squamous cell carcinoma (SCC) Ex: Incidence of SCC

&: Other examples of model fit in extra slides; Data: US Cancer Statistics (NPCR/SEER)

Economic analysis

- Perspective:
- Costs:
- Outcome Measure:
- Discounting:
- Time Horizon:
- Vaccine cost per dose[†]:

Societal

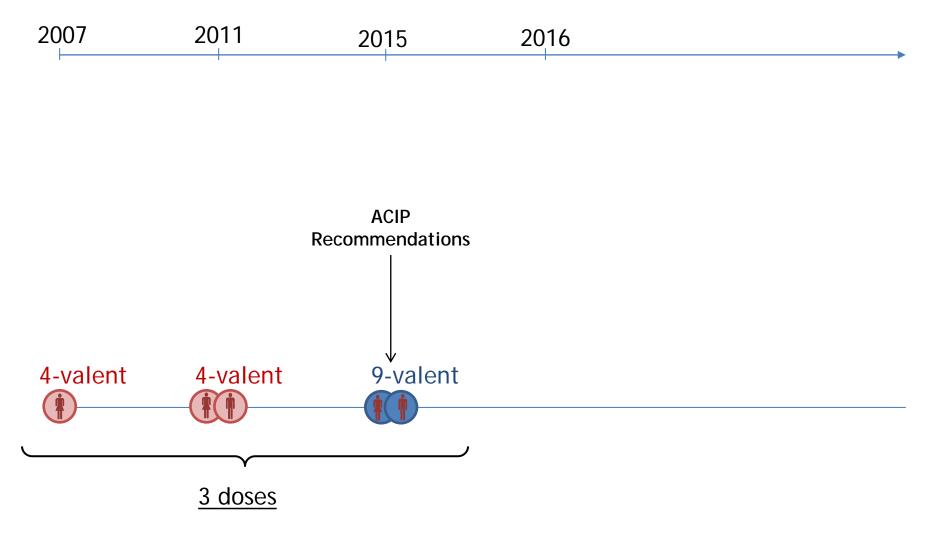
All direct medical costs (\$US 2013)*

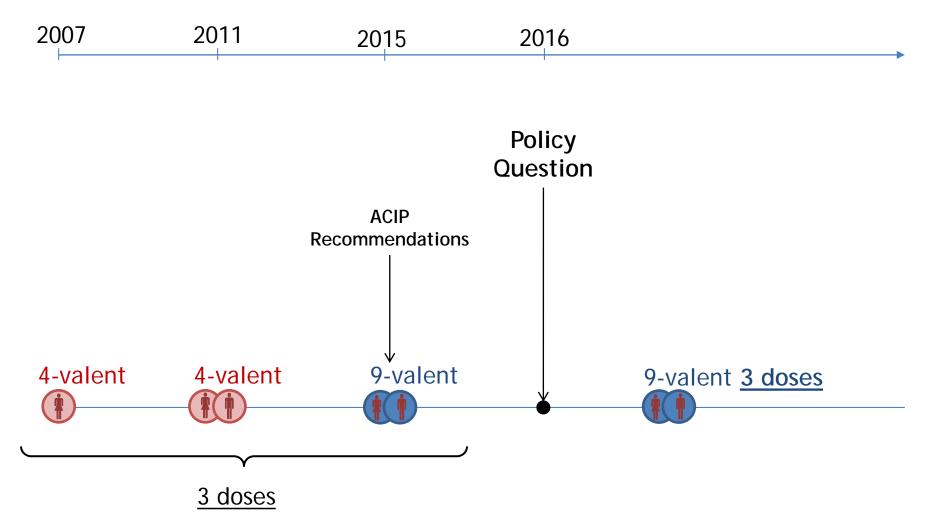
Cost per QALY-gained*

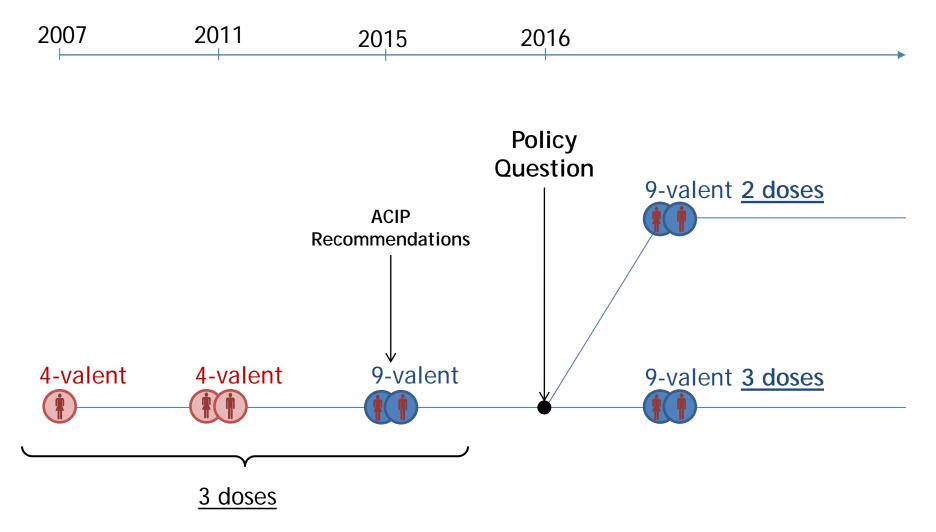
3% for future costs and benefits

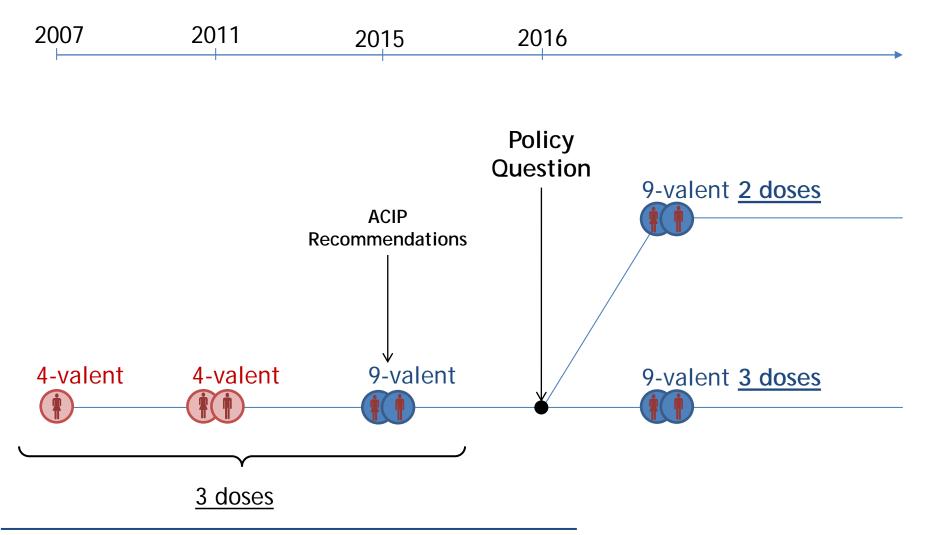
100 years

\$158 with administration costs[&]


Definition: QALY=quality-adjusted life-year


2- and 3-dose schedule.


^{*.} Description of parameters and references available in extra slides


[&]amp;. All vaccine prices in this presentation include the administration costs. We assume equal vaccine cost per dose for

^{†:} Cost from Merck presentation at the 29th International Papillomavirus Conference, 2014

Vaccination coverage: • Used age-specific uptake rates: Annual % vaccinated among those who had not previously completed their schedule

- 2007-14: Observed uptake rates (U.S. National Immunization Survey)
- 2015+: Assumed uptake rates constant at 2014 levels

Vaccine characteristics

	Scenarios				
Schedule	3-dose	2-dose			
Duration	Life	Life, 30, 25, 20, 15 yrs			
Efficacy ^[1]	95%	95%, 85%			
Vaccination coverage	Observed	Observed, 5-15 percentage point increase&			

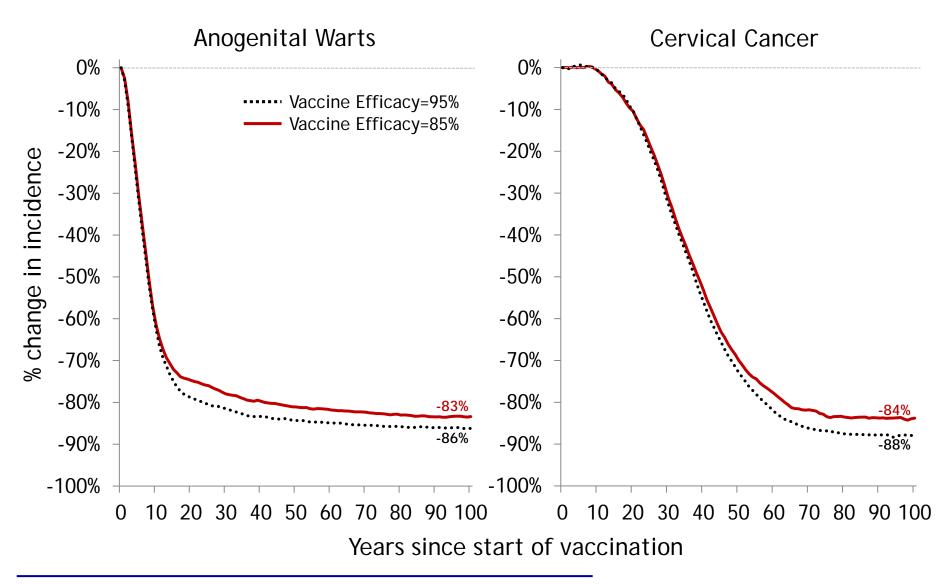
We know that:

 If efficacy and duration are similar, 2 doses will be cost saving compared with 3 doses

Therefore:

 We examined the potential impact if 2 doses provided lower efficacy or shorter duration of protection

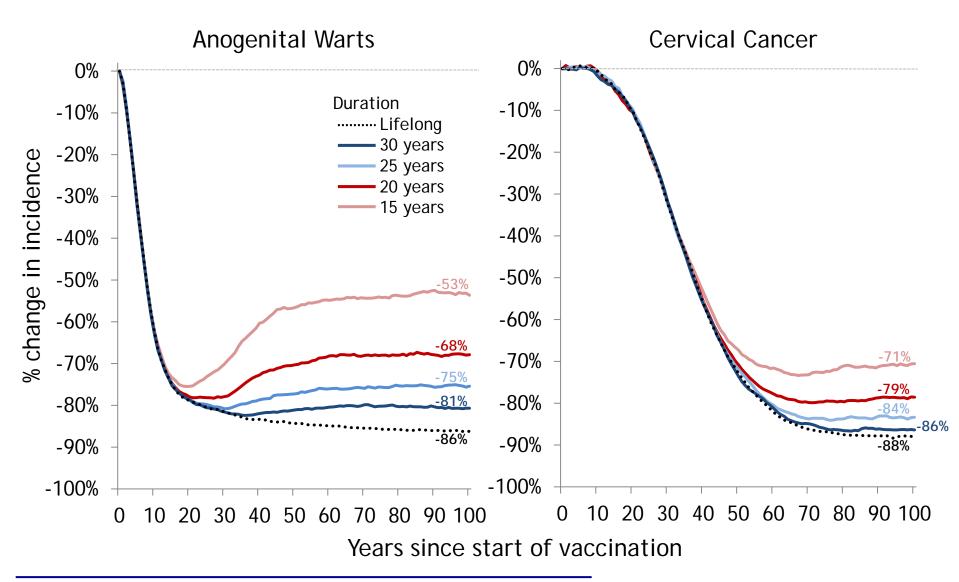
REF: [1] Joura *NEJM* 2015; we assume that vaccine efficacy is the same in boys and girls &: Absolute increase in coverage


Results: Effectiveness

Key question:

What vaccine characteristics are most important when considering reducing doses?

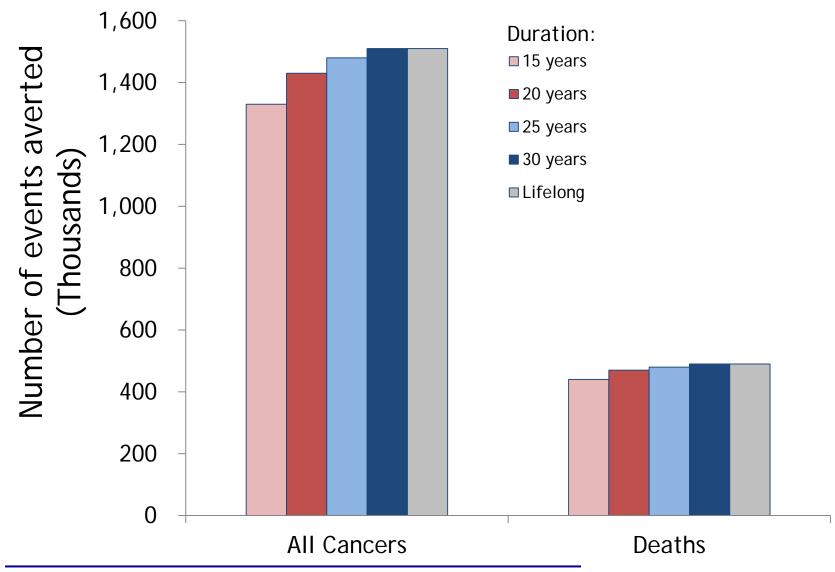
Effectiveness Impact of efficacy


Vaccine duration=Lifelong

Predictions: Mean estimate generated by the 50 best fitting parameter sets

Effectiveness Impact of duration

Vaccine efficacy=95%

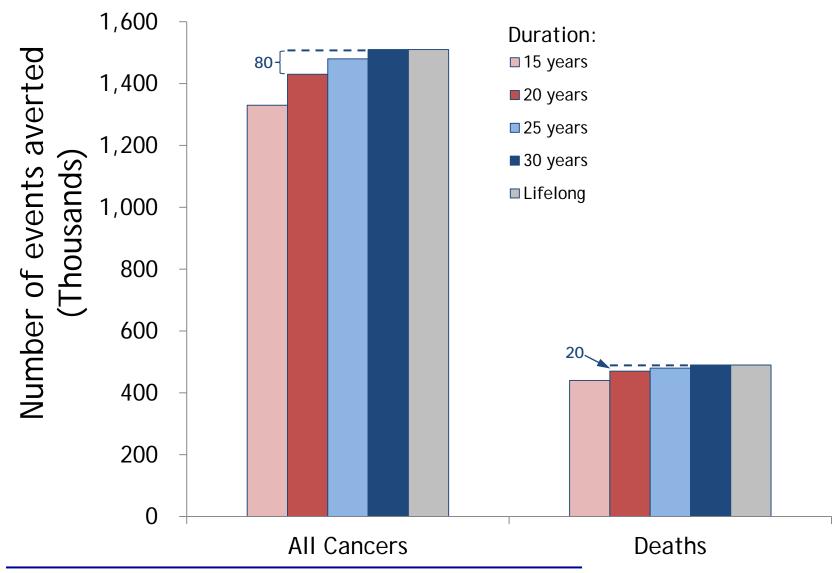


Predictions: Mean estimate generated by the 50 best fitting parameter sets (20 runs per parameter set) 20

Health Outcomes Prevented over 100 years

Impact of duration

Vaccine Efficacy=95%, Population=300 million, Undiscounted



Predictions: Mean estimate generated by the 50 best fitting parameter sets

Health Outcomes Prevented over 100 years

Impact of duration

Vaccine Efficacy=95%, Population=300 million, Undiscounted

Predictions: Mean estimate generated by the 50 best fitting parameter sets

Results: Cost-Effectiveness

Key question:

What is the cost-effectiveness of 2-dose and 3-dose vaccination for different assumptions of duration of protection?

Impact of duration

Vaccine Efficacy=95%; 3-dose Duration=Lifelong; Pop=300 million; Horizon=100 years

		Change in QALY-	(\$/	ICER /QALY-gained)
	Change in costs (\$ million)	gained (1,000 QALY)	Mean	[80%UI]
2 doses (vs. No vaccination)				
2-dose duration Lifelong	(5,786)	2,209	CS	[CS; 500]
30 years	(5,764)	2,218	CS	[CS; 400]
25 years	(5,157)	2,189	CS	[CS; 700]
20 years	(3,830)	2,134	CS	[CS; 1,500]
15 years	(1,195)	2,018	CS	[CS; 2,600]
3rd dose (vs. 2 doses)				
2-dose duration Lifelong	10,671	0	Dominated	Dominated
30 years	10,355	5	>1million	[209,300; Dominated]
25 years	9,787	32	303,700	[97,800; Dominated]
20 years	8,718	73	118,700	[57,000; 307,500]
15 years	6,463	171	37,700	[19,100; 70,000]

Definitions: 80%UI=10th and 90th percentiles of 50 parameter sets run 20 times each; CS=Cost-saving

Impact of duration

Vaccine Efficacy=95%; 3-dose Duration=Lifelong; Pop=300 million; Horizon=100 years

	Change in QALY-		(\$/	ICER (\$/QALY-gained)	
	Change in costs (\$ million)	gained (1,000 QALY)	Mean	[80%UI]	
2 doses (vs. No vaccination)		F		7	
2-dose duration Lifelong	(5,786)	2,209	CS	[CS; 500]	
30 years	(5,764)	2,218	CS	[CS; 400]	
25 years	(5,157)	2,189	CS	[CS; 700]	
20 years	(3,830)	2,134	CS	[CS; 1,500]	
15 years	(1,195)	2,018	CS	[CS; 2,600]	
		L		J	
3rd dose (vs. 2 doses)					
2-dose duration Lifelong	10,671	0	Dominated	Dominated	
30 years	10,355	5	>1million	[209,300; Dominated]	
25 years	9,787	32	303,700	[97,800; Dominated]	
20 years	8,718	73	118,700	[57,000; 307,500]	
15 years	6,463	171	37,700	[19,100; 70,000]	

Impact of duration

Vaccine Efficacy=95%; 3-dose Duration=Lifelong; Pop=300 million; Horizon=100 years

		Change in QALY-	(\$/	ICER /QALY-gained)
	Change in costs (\$ million)	gained (1,000 QALY)	Mean	[80%UI]
2 doses (vs. No vaccination)				
2-dose duration Lifelong	(5,786)	2,209	CS	[CS; 500]
30 years	(5,764)	2,218	CS	[CS; 400]
25 years	(5,157)	2,189	CS	[CS; 700]
20 years	(3,830)	2,134	CS	[CS; 1,500]
15 years	(1,195)	2,018	CS	[CS; 2,600]
3rd dose (vs. 2 doses)		_		
2-dose duration Lifelong	10,671	0	Dominated	Dominated
30 years	10,355	5	>1million	[209,300; Dominated]
25 years	9,787	32	303,700	[97,800; Dominated]
20 years	8,718	73	118,700	[57,000; 307,500]
15 years	6,463	171	37,700	[19,100; 70,000]

Impact of duration

Vaccine Efficacy=95%; 3-dose Duration=Lifelong; Pop=300 million; Horizon=100 years

		Change in QALY-	(\$/	ICER /QALY-gained)
	Change in costs (\$ million)	gained (1,000 QALY)	Mean	[80%UI]
2 doses (vs. No vaccination)				
2-dose duration Lifelong	(5,786)	2,209	CS	[CS; 500]
30 years	(5,764)	2,218	CS	[CS; 400]
25 years	(5,157)	2,189	CS	[CS; 700]
20 years	(3,830)	2,134	CS	[CS; 1,500]
15 years	(1,195)	2,018	CS	[CS; 2,600]
3rd dose (vs. 2 doses)				
2-dose duration Lifelong	10,671	0	Dominated	Dominated
30 years	10,355	5	>1million	[209,300; Dominated]
25 years	9,787	32	303,700	[97,800; Dominated]
20 years	8,718	73	118,700	[57,000; 307,500]
15 years	6,463	171	37,700	[19,100; 70,000]

Definitions: 80%UI=10th and 90th percentiles of 50 parameter sets run 20 times each; CS=Cost-saving

Results: Sensitivity Analysis Influential Variables

Incremental Cost-effectiveness (\$/QALY-gained)

3-dose Duration=Lifelong; U.S. Vaccination coverage

	2-dose (vs	. No vacc.)	3rd dose (v	vs. 2 doses)
2-dose duration	Lifelong	20 years	Lifelong	20 years
Reference scenario ^{&}	CS	CS	Dominated	118,700
Vaccination coverage 5 pp increase 15 pp increase	CS CS	CS CS	Dominated Dominated	Dominated Dominated
2-dose Efficacy=85%	CS	n/a	144,800	n/a
Screening Program Cotesting	CS	CS	Dominated	96,500
Economic Parameters				
Min Disease Burden	CS	CS	Dominated	141,700
Max Disease Burden	CS	CS	Dominated	53,000
Min Healthcare costs	4,800	5,800	Dominated	122,600
Max Healthcare costs	CS	CS	Dominated	109,200
Time Horizon=30yrs	9,100	9,400	Dominated	Dominated

&. Reference scenario: Vaccine Efficacy=95%; Max(Min): All parameters set to their max(min) values.
 Predictions: Mean of 50 parameter sets run 20 times each.
 Definitions: pp=percentage point; CS=Cost-saving

Incremental Cost-effectiveness (\$/QALY-gained)

3-dose Duration=Lifelong; U.S. Vaccination coverage

	2-dose (vs	. No vacc.)	3rd dose (vs. 2 doses)
2-dose duration	Lifelong	20 years	Lifelong 20 years
Reference scenario ^{&}	CS	CS	Dominated 118,700
Vaccination coverage 5 pp increase 15 pp increase	CS CS	CS CS	Dominated Dominated Dominated Dominated
2-dose Efficacy=85%	CS	n/a	144,800 n/a
Screening Program Cotesting	CS	CS	Dominated 96,500
Economic Parameters			
Min Disease Burden	CS	CS	Dominated 141,700
Max Disease Burden	CS	CS	Dominated 53,000
Min Healthcare costs	4,800	5,800	Dominated 122,600
Max Healthcare costs	CS	CS	Dominated 109,200
Time Horizon=30yrs	9,100	9,400	Dominated Dominated

&. Reference scenario: Vaccine Efficacy=95%; Max(Min): All parameters set to their max(min) values.
 Predictions: Mean of 50 parameter sets run 20 times each.
 Definitions: pp=percentage point; CS=Cost-saving

Incremental Cost-effectiveness (\$/QALY-gained)

3-dose Duration=Lifelong; U.S. Vaccination coverage

	2-dose (vs	. No vacc.)	o vacc.) 3rd dose (vs. 2	
2-dose duration	Lifelong	20 years	Lifelong	20 years
Reference scenario ^{&}	CS	CS	Dominated	118,700
Vaccination coverage 5 pp increase 15 pp increase	CS CS	CS CS	Dominated Dominated	Dominated Dominated
2-dose Efficacy=85%	CS	n/a	144,800	n/a
Screening Program Cotesting	CS	CS	Dominated	96,500
Economic Parameters				
Min Disease Burden	CS	CS	Dominated	141,700
Max Disease Burden	CS	CS	Dominated	53,000
Min Healthcare costs	4,800	5,800	Dominated	122,600
Max Healthcare costs	CS	CS	Dominated	109,200
Time Horizon=30yrs	9,100	9,400	Dominated	Dominated

&. Reference scenario: Vaccine Efficacy=95%; Max(Min): All parameters set to their max(min) values. Predictions: Mean of 50 parameter sets run 20 times each. Definitions: pp=percentage point; CS=Cost-saving

Incremental Cost-effectiveness (\$/QALY-gained)

3-dose Duration=Lifelong; U.S. Vaccination coverage

	2-dose (vs. No vacc.) 3rd dose (v		vs. 2 doses)	
2-dose duration	Lifelong	20 years	Lifelong	20 years
Reference scenario ^{&}	CS	CS	Dominated	118,700
Vaccination coverage 5 pp increase 15 pp increase	CS CS	CS CS	Dominated Dominated	Dominated Dominated
2-dose Efficacy=85%	CS	n/a	144,800	n/a
Screening Program Cotesting	CS	CS	Dominated	96,500
Economic Parameters				
Min Disease Burden	CS	CS	Dominated	141,700
Max Disease Burden	CS	CS	Dominated	53,000
Min Healthcare costs	4,800	5,800	Dominated	122,600
Max Healthcare costs	CS	CS	Dominated	109,200
Time Horizon=30yrs	9,100	9,400	Dominated	Dominated

&. Reference scenario: Vaccine Efficacy=95%; Max(Min): All parameters set to their max(min) values. Predictions: Mean of 50 parameter sets run 20 times each. Definitions: pp=percentage point; CS=Cost-saving

Discussion

Main limitations

- Duration of 2-dose and 3-dose 9-valent vaccine efficacy and future vaccination coverage remain unknown:
 - Varied duration of protection and vaccination coverage
 - Duration of protection and coverage assumptions have an important impact on conclusions
- Screening may change in the coming years:
 - Modeled both cytology-based screening and HPV co-testing
 - Screening method does not impact conclusions

Comparison of results with other studies

- First effectiveness and cost-effectiveness analysis of 2- vs. 3dose vaccination with the 9-valent vaccine (in the U.S. or elsewhere)
- Conclusions are consistent with 4-valent effectiveness and costeffectiveness analyses in Canada and the U.K.^[1,2]:
 - 2 doses must protect for more than 20 years for the 3rd dose to be costineffective

Summary

Summary

- The incremental health benefits and cost-effectiveness of a 3rd dose of HPV vaccine depend on relative duration of efficacy provided by 2 vs. 3 doses
- 2-dose vaccination is predicted to reduce HPV-burden of disease substantially and is cost saving if 2-dose protection > 20 years
- 3-dose vaccination is predicted to have a high cost per QALY gained (greater than \$118,000) compared to 2-dose vaccination, except when 2-dose protection is < 20 years
- 2-dose vaccination will provide similar population-level health benefits to 3-dose vaccination:
 - Unless 2 doses provide shorter duration of vaccine protection AND 2-dose schedules do not enable higher vaccination coverage